433 research outputs found

    The HPS electromagnetic calorimeter

    Get PDF
    The Heavy Photon Search experiment (HPS) is searching for a new gauge boson, the so-called “heavy photon.” Through its kinetic mixing with the Standard Model photon, this particle could decay into an electron-positron pair. It would then be detectable as a narrow peak in the invariant mass spectrum of such pairs, or, depending on its lifetime, by a decay downstream of the production target. The HPS experiment is installed in Hall-B of Jefferson Lab. This article presents the design and performance of one of the two detectors of the experiment, the electromagnetic calorimeter, during the runs performed in 2015–2016. The calorimeter's main purpose is to provide a fast trigger and reduce the copious background from electromagnetic processes through matching with a tracking detector. The detector is a homogeneous calorimeter, made of 442 lead-tungstate (PbWO4) scintillating crystals, each read out by an avalanche photodiode coupled to a custom trans-impedance amplifier

    PRIMA+: A proton Computed Tomography apparatus

    Get PDF
    The proton Computed Tomography (pCT) is a medical imaging method, based on the use of proton beams with kinetic energy of the order of 250 MeV, aimed to directly measure the stopping power distribution of tissues thus improving the present accuracy of treatment planning in hadron therapy. A pCT system should be capable to measure tissue electron density with an accuracy better than 1% and a spatial resolution better than 1 mm. The blurring effect due to multiple Coulomb scattering can be mitigated by single proton tracking technique. As a first step towards pCT the PRIMA+ Collaboration built a prototype capable to carry out a single radiography and a tomographic image of a rotating object. This apparatus includes a silicon microstrip tracker to identify the proton trajectory and a YAG:Ce calorimeter to measure the particle residual energy

    Data acquisition system for a proton imaging apparatus

    Get PDF
    New developments in the proton-therapy field for cancer treatments, leaded Italian physics researchers to realize a proton imaging apparatus consisting of a silicon microstrip tracker to reconstruct the proton trajectories and a calorimeter to measure their residual energy. For clinical requirements, the detectors used and the data acquisition system should be able to sustain about 1 MHz proton rate. The tracker read-out, using an ASICs developed by the collaboration, acquires the signals detector and sends data in parallel to an FPGA. The YAG:Ce calorimeter generates also the global trigger. The data acquisition system and the results obtained in the calibration phase are presented and discussed

    Measurement of the atmospheric muon depth intensity relation with the NEMO Phase-2 tower

    Get PDF
    The results of the analysis of the data collected with the NEMO Phase-2 tower, deployed at 3500 m depth about 80 km off-shore Capo Passero (Italy), are presented. Cherenkov photons detected with the photomultipliers tubes were used to reconstruct the tracks of atmospheric muons. Their zenith-angle distribution was measured and the results compared with Monte Carlo simulations. An evaluation of the systematic effects due to uncertainties on environmental and detector parameters is also included. The associated depth intensity relation was evaluated and compared with previous measurements and theoretical predictions. With the present analysis, the muon depth intensity relation has been measured up to 13 km of water equivalent.Comment: submitted to Astroparticle Physic

    NEMO: A Project for a km3^3 Underwater Detector for Astrophysical Neutrinos in the Mediterranean Sea

    Full text link
    The status of the project is described: the activity on long term characterization of water optical and oceanographic parameters at the Capo Passero site candidate for the Mediterranean km3^3 neutrino telescope; the feasibility study; the physics performances and underwater technology for the km3^3; the activity on NEMO Phase 1, a technological demonstrator that has been deployed at 2000 m depth 25 km offshore Catania; the realization of an underwater infrastructure at 3500 m depth at the candidate site (NEMO Phase 2).Comment: Proceeding of ISCRA 2006, Erice 20-27 June 200

    Measurement of the atmospheric muon flux with the NEMO Phase-1 detector

    Get PDF
    The NEMO Collaboration installed and operated an underwater detector including prototypes of the critical elements of a possible underwater km3 neutrino telescope: a four-floor tower (called Mini-Tower) and a Junction Box. The detector was developed to test some of the main systems of the km3 detector, including the data transmission, the power distribution, the timing calibration and the acoustic positioning systems as well as to verify the capabilities of a single tridimensional detection structure to reconstruct muon tracks. We present results of the analysis of the data collected with the NEMO Mini-Tower. The position of photomultiplier tubes (PMTs) is determined through the acoustic position system. Signals detected with PMTs are used to reconstruct the tracks of atmospheric muons. The angular distribution of atmospheric muons was measured and results compared with Monte Carlo simulations.Comment: Astrop. Phys., accepte

    QBeRT: An innovative instrument for qualification of particle beam in real-time

    Get PDF
    This paper describes an innovative beam diagnostic and monitoring system composed of a position sensitive detector and a residual range detector, based on scintillating optical fiber and on an innovative read-out strategy and reconstruction algorithm. The position sensitive detector consists of four layers of pre-aligned and juxtaposed scintillating fibres arranged to form two identical overlying and orthogonal planes. The 500 ÎĽm square section fibres are optically coupled to two Silicon Photomultiplier arrays using a channel reduction system patented by the Istituto Nazionale di Fisica Nucleare. The residual range detector is a stack of sixty parallel layers of the same fibres used in the position detector, each of which is optically coupled to a channel of Silicon Photomultiplier array by wavelength shifting fibres. The sensitive area of the two detectors is 9 Ă— 9 cm2. After being fully characterized at CATANA proton therapy facility, the performance of the prototypes was tested during last year also at TIFPA proton irradiation facility. The unique feature of these detectors is the possibility to work in imaging conditions (e.g. a particle at a time up to 106 particles per second) and in therapy conditions up to 109 particles per second. The combined use of the two detectors, in imaging conditions, as an example of application, allows the particle radiography of an object. In therapy conditions, in particular, the system measures the position, the profiles, the energy and the fluence of the beam

    Design and characterisation of a real time proton and carbon ion radiography system based on scintillating optical fibres

    Get PDF
    This paper describes the design and characterization of a charged particle imaging system composed of a position sensitive detector and residual range detector. The position detector consists of two identical overlying and orthogonal planes each of which consists of two layers of pre-aligned and juxtaposed scintillating fibres. The 500 μm square section fibres are optically coupled to two Silicon Photomultiplier arrays using a channel reduction system patented by the Istituto Nazionale di Fisica Nucleare. The residual range detector consists of sixty parallel layers of the same fibres used in the position detector each of which is optically coupled to a Silicon Photomultiplier array by wavelength shifting fibres. The sensitive area of the two detectors is 9 × 9 cm 2. Characterising the position sensitive and the residual range detectors to reconstruct the radiography, is fundamental to validating the detectors’ designs. The proton radiography of a calibrated target in imaging conditions is presented. The spatial resolution of the position sensitive detector is about 150 μm and the range resolution is about 170 μm. The performance of the prototypes were tested at CATANA proton therapy facility (Laboratori Nazionali del Sud, INFN, Catania) with energy up to 58 MeV and rate of about 10^6 particles per second. The comparison between the simulations and measurements confirms the validity of this system
    • …
    corecore